Проблемы генетики первичных иммунодефицитов

Проблемы генетики первичных иммунодефицитов

Проблемы генетики первичных иммунодефицитов

Общие проблемы генетики первичных иммунодефицитов

Для понимания генетики первичных иммунодефицитов полезно сопоставить спектры генетических нарушений, лежащих в их основе, с двумя аналогичными спектрами — суммой данных о последствиях генетического нокаута генов и набором мутаций генов, имеющих отношение к иммунной системе, отобранных и закрепленных в линиях мышей.

В основе генетического нокаута лежит генно-инженерная технология, состоящая в следующем. В ген, подлежащий выключению, вводится ген устойчивости к неомицину (neo), который одновременно расщепляет генмишень и служит маркером. С одной или обеих сторон от гена-мишени помещают второй маркерный ген HSV-tk, кодирующий тимидинкиназу вируса простого герпеса. Ген neo придает клеткам устойчивость к неомицину и его аналогам, а ген HSV-tk — к противовирусному препарату ганцикловиру. Эту конструкцию вводят в клетки, которые помещают в культуру, содержащую аналог неомицина и ганцикловир. Клетки, в которые описанная конструкция не интегрировалась, гибнут от действия аналога неомицина. Клетки, в ДНК которых конструкция встроилась в нехарактерном для данного гена месте, гибнут от действия ганцикловира. Выживают только клетки, в которых введенная конструкция заняла положенное место и уже вступила в рекомбинацию с нормальным геном, в результате которой ген HSV-tk был «выброшен» как негомологичный (отсюда — устойчивость к ганцикловиру). В таких клетках ген-мишень, расщепленный внедрением гена neo, не работает, в то время как ген neo функционирует и обеспечивает устойчивость к неомицину и его аналогам. Если подобная процедура проделана с зиготой, которую можно ввести в матку самке и получить потомство, удается создать мышей с целенаправленно удаленным геном.

С помощью данной процедуры получено очень большое количество «нокаутных» мышей, у которых инактивированы гены, кодирующие различные молекулы, которые участвуют в развитии клеток иммунной системы и осуществлении иммунологических процессов. Этот подход используют для наиболее четкого определения функциональной роли конкретных молекул в организме. Следствия нокаута генов, кодирующих иммунологически значимые молекулы, весьма разнообразны — от эмбриональной летальности до отсутствия эффектов. Гибель на стадиях эмбрионального развития обычно обусловлена участием молекул в ключевых событиях эмбриогенеза. Само по себе нарушение иммунологических функций не может быть причиной смерти (органы и клетки иммунной системы не относятся к жизненно важным органам) и в условиях особого содержания жизнеспособность обеспечивается при поражениях иммунной системы любой степени тяжести.

С другой стороны, выясняется, что хотя функциональные тесты in vitro и даже in vivo свидетельствуют о наличии у отдельных молекул тех или иных функциональных эффектов (например, у цитокинов, — способности вызывать пролиферацию определенных клеток), выключение соответствующего гена путем нокаута не всегда приводит к утрате функций, выполняемых продуктами его экспрессии. Чаще всего причина такого несоответствия — феномен избыточности, состоящий в том, что один и тот же функциональный эффект может быть вызван несколькими молекулами. Выключение генов каждой из них желаемого эффекта не дает и только выключение генов всего комплекса молекул, выполняющих эту функцию, устраняет изучаемый эффект. Это означает, что далеко не все генетические изменения вызовут видимые функциональные нарушения на уровне организма. С другой стороны, опыт использования генетического нокаута позволил получить достаточно полную информацию о молекулярном обеспечении процессов,  обусловливающих развитие и функционирование иммунной системы.

Другой ряд иммунологических феноменов генетической природы, с которым следует сопоставить первичные иммунодефициты, представляет спектр линий мышей, несущих мутации, влияющие на иммунную систему. Мутации, регистрируемые у лабораторных мышей, отбирались искусственно и закреплялись в линиях. В естественных популяциях многие из этих мутаций не могли бы закрепиться. Спектр мутаций мышей, по крайней мере потенциально, более широк, чем спектр мутаций, лежащих в основе первичных иммунодефицитов.

Проведенное сопоставление позволяет констатировать, что наблюдаемый спектр первичных иммунодефицитов человека сужен по сравнению с максимально возможным спектром мутаций иммунологически значимых генов в связи с эмбриональными потерями и выбраковкой мутаций на популяционном уровне под действием отбора. Даже в том минимальном объеме, в каком отбор проявляется в человеческой популяции, его достаточно, чтобы элиминировать очевидно вредные мутации. Действие отбора на мутации, обусловливающие развитие наследственных заболеваний, будет полностью исчезать по мере разработки эффективных методов лечения. С другой стороны, необходимо учитывать, что фенотипически проявляются только мутации тех генов, которые кодируют незаменимые молекулы. Этим объясняется, например, редкость первичных иммунодефицитов, затрагивающих систему цитокинов, для которой характерна максимальная избыточность.

Статья подготовлена сайтом OptimusMedicus.com.

Спасибо за внимание. Ваш OptimusMedicus.com

Читайте также: